Contaminated land for construction
[IP address hidden] |
|||
Line 60: | Line 60: | ||
*Using a treatment to destroy, remove or detoxify containments. | *Using a treatment to destroy, remove or detoxify containments. | ||
− | Remediation can be in-situ (on site on undisturbed soil) or ex-situ (applied to excavated soil either on or off site). | + | Remediation can be in-situ (on site on undisturbed soil) or ex-situ (applied to excavated soil either on or off site). |
− | + | ||
− | + | ||
{| width="500" cellspacing="0" cellpadding="0" border="0" style="width: 500px" | {| width="500" cellspacing="0" cellpadding="0" border="0" style="width: 500px" |
Revision as of 04:58, 24 April 2013
Contaminated land is land that presents a hazard in the form of material that has the potential for harm. For example, a landfill site contain contaminated land.
Assessment of the risk of harm is based on the likelihood, frequency and seriousness of adverse consequences, which might include:
- Threats to human health.
- Damage to flora and fauna.
- Contamination of ground water.
- Damage to foundations and structures.
- Settlement
- Subsidence.
- Migration of contaminants to adjacent land.
The introduction of the Environmental Protection Act has been the driving force behind the treatment of contaminated land. The main types of contaminant identified are:
- Toxic or carcinogenic chemicals such as cyanide, arsenic, mercury and benzene.
- Toxic or phytotoxic metals such as lead, chromium, nickel, copper, cadmium and zinc.
- Organic contaminants such as oils, solvents and phenols.
- Corrosive substances such as acids and sulphates.
- Flammable, toxic or asphyxiating gases such as methane, hydrogen sulphide and carbon dioxide.
- Combustible material.
- Asbestos.
- Radioactive substances.
Some likely sources of contamination are:
- Mining and extraction industries can result in arsenic contamination.
- Iron and steelworks can result in arsenic contamination.
- Gasworks can result in the presence of cyanide and phenol.
- Power stations.
- Metal treatment and finishing.
- Chemical industries.
- Scrap yards.
- Petrol stations and refineries.
- Fragmentation plants.
- Paint and dyestuff industries.
- Railway land, especially large sidings and depots.
- Sewage farms and works can result in zinc and copper contamination .
- Waste disposal sites and fly tips may contribute significant amounts of cadmium.
- Landfill sites can result in the presence of cyanide and phenol.
- Cable burning and bonfire sites.
- Dockyards and dock basins.
- Ordinance and munition factories.
- Garden soils, especially in the capital can contain cadmium.
If contamination is suspected, desktop studies of site history should be carried out to establish whether there is a need for further investigation. Sources for a desktop study might include:
- Maps: Ordinance Survey (current and historical), geological survey maps and town plans.
- Statutory authority and utilities data, such as; local authorities, river purification boards, the Health and Safety Executive and the National River Agency.
- Trade information from directories and trade associations.
- Photographic records, particularly aerial shots.
- Technical data from public literature.
- Knowledge gained from adjacent development.
- Anecdotal information from libraries, local residents and local newspapers.
- Meteorological, mining and hydro-geological records.
If a desktop study raises concerns, or if the history of a site is not fully known, then trial pits and borehole investigations should be undertaken, concentrating on the areas of greatest suspicion. Tests may be based on soil samples taken at a variety of depths and locations in order to determine the nature and level of contamination as well as its extent. Initially, this is likely to be at least 9 samples per hectare. but more testing may be necessary depending on what is found.
The legal framework for contaminated land is incorporated in The Environmental Protection Act – contaminated land registers, under Section 143. Section 61 obligates a landowner to bring pollution to an end. Prosecutions can be brought about by state regulatory authorities for instance through Section 85 of the Water Resources Act.
There are three main clean-up techniques:
- Excavation and removal of contaminated soil followed by either disposal or off-site treatment.
- Limiting the spread of the contamination.
- Using a treatment to destroy, remove or detoxify containments.
Remediation can be in-situ (on site on undisturbed soil) or ex-situ (applied to excavated soil either on or off site).
TECHNIQUE |
DETAILS |
Soil Removal |
Followed by:
|
Containment |
For example, 'pathway interdiction' using high density polythene as a membrane both horizontally and vertically as a capping, encapsulating the This option is chosen if other techniques result in unrealistic costs or create potential hazards. |
Soil treatment |
Contamination can be:
This can be in-situ or ex-situ |
The main types of soil treatment are:
- Biological treatment.
- Thermal treatment / desorption (using heat to increase the volatility of contaminants so they can be removed).
- Chemical immobilisation / stabilisation / solidifitation.
- Washing (injecting clean water and extracting contaminated water).
- Soil vapour extraction using vacuum extraction (this is particularly effective with volatile chemicals such as petrol and chlorinated solvents).
Biological treatment, also known as bioremediation, is the most common technique. It utilises microorganisms and plants and is particularly suitable for fuel-based contaminants. Microbes 'eat' the chemicals found in oil spills, digesting them to produce water and carbon dioxide. For the bacteria to grow, the right temperature, nutrients and amount of oxygen must be provided. This can be achieved by pumping in air and other substances such as molasses. In some countries the cold weather conditions means that the soil has to be excavated and cleaned above ground with the help of heaters, and an oxygen supply. Bioremediation allows cleaning on site, generally it does not require much labour or equipment and so is usually cheaper than other methods.
Although some solutions are cheaper than others, the cost of site investigation and soil treatment is still significant. Developers suggest that it should be up to the government to cover the cost of cleaning up contaminated land, otherwise, the need to pass on costs to purchasers means that it will not always be possible to provide affordable housing on such sites.
Find out more
Related articles on Designing Buildings Wiki
- Asbestos.
- Brownfield land.
- Deleterious materials.
- Demolition.
- Health and safety.
- Landfill tax.
- Pre construction information.
- Site appraisal.
- Site information.
- Statutory Authorities.
- Temporary works.
External references
- The Water Resources Act.
- The Environmental Protection Act
- ICRCL Committee on land reclamation.
- BSI Draft for Development DD 175 for identification of potentially contaminated land and its investigation.
- Institution of Environmental Health Officers: Guidance on development of contaminated land.
- Scottish Enterprise Handbook on development of contaminated land.
- Department of the Environment Waste Management Paper No 27.Landfill Gas: A Technical Memorandum Providing Guidance on the Monitoring and Control of Landfill Gas.
- Waste (England and Wales) Regulations.
- Environment Agency: Control of Pollution (oil storage, England).
- EU Soil Framework Directive.
- European Commission: Soil.
- The Scottish Governments: Planning Advice Note PAN 33, The development of contaminated land.
Featured articles and news
Infrastructure that connect the physical and digital domains.
Harnessing robotics and AI in challenging environments
The key to nuclear decommissioning and fusion engineering.
BSRIA announces Lisa Ashworth as new CEO
Tasked with furthering BSRIA’s impressive growth ambitions.
Public buildings get half a million energy efficiency boost
£557 million to switch to cleaner heating and save on energy.
CIOB launches pre-election manifesto
Outlining potential future policies for the next government.
Grenfell Tower Inquiry announcement
Phase 2 hearings come to a close and the final report due in September.
Progress from Parts L, F and O: A whitepaper, one year on.
A replicated study to understand the opinion of practitioners.
ECA announces new president 2024
Electrical engineer and business leader Stuart Smith.
A distinct type of countryside that should be celebrated.
Should Part O be extended to existing buildings?
EAC brands heatwave adaptation a missed opportunity.
Definition of Statutory in workplace and facilities management
Established by IWFM, BESA, CIBSE and BSRIA.
Tackling the transition from traditional heating systems
59% lack the necessary information and confidence to switch.
The general election and the construction industry
As PM, Rishi Sunak announces July 4 date for an election.
Eco apprenticeships continue help grow green workforce
A year after being recognised at the King's coronation.
Permitted development rights for agricultural buildings
The changes coming into effect as of May 21, 2024.