Cellular concrete in construction
m (moved Cellular concrete to Cellular concrete in construction) |
Onicesleeth (Talk | contribs) |
||
Line 1: | Line 1: | ||
− | Lightweight cellular concrete is made by mixing pre-formed stable foam and cement-based slurry. Cellular concrete is replacing traditional materials in the construction industry due to its lightweight, high quality and availability. | + | Lightweight [http://www.marketsandmarkets.com/Market-Reports/cellular-concrete-market-1019470.html cellular concrete] is made by mixing pre-formed stable foam and cement-based slurry. Cellular concrete is replacing traditional materials in the construction industry due to its lightweight, high quality and availability. |
The cellular concrete market is projected to grow from USD 337.6 Million in 2015 to reach USD 449.8 Million by 2020, at an estimated CAGR of 5.9%. | The cellular concrete market is projected to grow from USD 337.6 Million in 2015 to reach USD 449.8 Million by 2020, at an estimated CAGR of 5.9%. |
Revision as of 06:37, 12 September 2018
Lightweight cellular concrete is made by mixing pre-formed stable foam and cement-based slurry. Cellular concrete is replacing traditional materials in the construction industry due to its lightweight, high quality and availability.
The cellular concrete market is projected to grow from USD 337.6 Million in 2015 to reach USD 449.8 Million by 2020, at an estimated CAGR of 5.9%.
Accelerated urbanisation, growth in infrastructural activities, and increasing industrialisation have driven the growth of the cellular concrete market. The increasing income and spending capacity of people in developing economies and increasing demand by end-use sectors such as commercial buildings, residential buildings, and infrastructure are the major factors driving the market.
This growth will be stimulated by expanding applications in construction components, blocks, void filling, and roof insulation. However, it is held back by the fact that it is easily replaceable.
Cellular concrete is a very flowable material and so can be easily installed by using gravity and is self-levelling. It is typically used to construct floor slabs, window panels and roofs.
The key companies involved in the market are:
- Saint Gobain (France),
- Fillcrete (South Africa),
- Xella Group (Germany),
- Cellucrete (U.S.),
- Cematrix (Canada),
- Litebuilt (Australia),
- Nublok (South Africa),
- Laston Italiana S.P.A (Italy),
- Cellular Concrete Technologies (U.S.),
- Aerix Industries (U.S.),
- ACICO (Kuwait),
- Shirke (India),
- Broco Industries (Indonesia),
- Aircrete Europe (Netherlands).
Cellular concrete provides structure, insulation, and fire and mold-resistance. Cellular concrete products include blocks, wall panels, floor and roof panels, and lintels. It also provides a low-density fill material used in geotechnical applications.
The infrastructure sector accounts for the largest market share of the market and this trend is projected to continue during the forecast period. This segment is also expected to grow at the fastest rate during the forecast period. The increase in development in the construction industry and eco- friendly building material is expected to boost the growth of the infrastructure sector. The residential sector is forecast to be the second-largest segment in the market in the coming years.
The rising demand for lightweight building materials across the world is expected to drive the market. The road sub-bases segment will see the highest CAGR from 2015 to 2020, followed by building materials and concrete pipes.
The European region is expected to account for the largest share in the cellular concrete market from 2015 to 2020. Asia-Pacific is projected to be the fastest-growing region for the market during the forecast period. Countries such as China and India are transforming their economies from being agriculture-based to manufacturing and other industry-based economies. Increasing urbanised population in China and India and growth in disposable income are driving the cellular concrete market in Asia-Pacific.
Find out more
Related articles on Designing Buildings Wiki.
- Alkali-activated binder.
- Alkali-aggregate reaction (AAR).
- Concrete-steel composite structures.
- Concrete vs. steel.
- Concreting plant.
- Formwork.
- Graphene-reinforced concrete.
- Hempcrete.
- Precast concrete.
- Prestressed concrete.
- Reinforced concrete.
- Screed.
- Self-compacting concrete.
- Smart concrete.
- Topmix Permeable.
Featured articles and news
Infrastructure that connect the physical and digital domains.
Harnessing robotics and AI in challenging environments
The key to nuclear decommissioning and fusion engineering.
BSRIA announces Lisa Ashworth as new CEO
Tasked with furthering BSRIA’s impressive growth ambitions.
Public buildings get half a million energy efficiency boost
£557 million to switch to cleaner heating and save on energy.
CIOB launches pre-election manifesto
Outlining potential future policies for the next government.
Grenfell Tower Inquiry announcement
Phase 2 hearings come to a close and the final report due in September.
Progress from Parts L, F and O: A whitepaper, one year on.
A replicated study to understand the opinion of practitioners.
ECA announces new president 2024
Electrical engineer and business leader Stuart Smith.
A distinct type of countryside that should be celebrated.
Should Part O be extended to existing buildings?
EAC brands heatwave adaptation a missed opportunity.
Definition of Statutory in workplace and facilities management
Established by IWFM, BESA, CIBSE and BSRIA.
Tackling the transition from traditional heating systems
59% lack the necessary information and confidence to switch.
The general election and the construction industry
As PM, Rishi Sunak announces July 4 date for an election.
Eco apprenticeships continue help grow green workforce
A year after being recognised at the King's coronation.
Permitted development rights for agricultural buildings
The changes coming into effect as of May 21, 2024.