Abiotic depletion potential
Contents |
[edit] Definition
Abiotic depletion refers to the removal of abiotic resources from the earth, or the depletion of non-living natural resources. For materials it is generally measured as abiotic depletion potential (ADP).
[edit] EN 15804:2012+A2:2019/AC:2021
ADP (both fossil and non fossil) are used as environmental impact indicators of EN 15804:2012+A2:2019/AC:2021 which is used as guidance in the generation of the life cycle assessment (LCA) methodology used to create Product Environmental Footprints (PEF). It is also considered to be one of the environmental performance indicators for the calculation, assessment and generation of environmental product declarations (EPDs).
In general it is separated out into two categories, one for non fossil based resources (minerals and metals) and a second for fossil resources. In both cases, it is recommended that assessment of ADP as an environmental impact indicator should be used with care as the uncertainties of the results are high and there is limited experience of its use as an indicator
[edit] Abiotic depletion potential (ADP) for minerals and metals (non-fossil resources)
In the same way that the global warming potential (GWP) of different pollutants are converted to ratios CO2 equivalent figures, ADP values are usually calculated to and equivalent of Antimony or Sb eq. Antimony (Sb) is a chemical element atomic number 51, a gray metalloid, found in nature mainly as the sulfide mineral stibnite. It is about one-fifth as abundant as arsenic, contributing on the average about one gram to every ton of Earth’s crust.
Examples
1 kg antimony = 1 kg Sb eq.
1 kg aluminium = 1.09 * 10^-9 Sb eq.
1 kg silver = 1.18 kg Sb eq.
(ref, ADP minerals & metals, EN 15804. Version: August 2021, Guinée et al. 2002, van Oers et al. 2002, CML 2001 baseline (Version: January 2016)
[edit] Abiotic depletion potential (ADP) for fossil resources
Here the weight of material is converted to its potential energy in unit in megajoules (MJ) equivalent to one million joules.
Examples
1 kg coal hard = 27.91 MJ
1 kg coal soft, lignite = 13.96 MJ
(Refs, ADP fossil resources, EN 15804. Version: August 2021, Guinée et al. 2002, van Oers et al. 2002, CML 2001 baseline (Version: January 2016)
[edit] Related articles on Designing Buildings
Featured articles and news
Infrastructure that connect the physical and digital domains.
Harnessing robotics and AI in challenging environments
The key to nuclear decommissioning and fusion engineering.
BSRIA announces Lisa Ashworth as new CEO
Tasked with furthering BSRIA’s impressive growth ambitions.
Public buildings get half a million energy efficiency boost
£557 million to switch to cleaner heating and save on energy.
CIOB launches pre-election manifesto
Outlining potential future policies for the next government.
Grenfell Tower Inquiry announcement
Phase 2 hearings come to a close and the final report due in September.
Progress from Parts L, F and O: A whitepaper, one year on.
A replicated study to understand the opinion of practitioners.
ECA announces new president 2024
Electrical engineer and business leader Stuart Smith.
A distinct type of countryside that should be celebrated.
Should Part O be extended to existing buildings?
EAC brands heatwave adaptation a missed opportunity.
Definition of Statutory in workplace and facilities management
Established by IWFM, BESA, CIBSE and BSRIA.
Tackling the transition from traditional heating systems
59% lack the necessary information and confidence to switch.
The general election and the construction industry
As PM, Rishi Sunak announces July 4 date for an election.
Eco apprenticeships continue help grow green workforce
A year after being recognised at the King's coronation.
Permitted development rights for agricultural buildings
The changes coming into effect as of May 21, 2024.